Blackhawk School District

CURRICULUM

Course Title: Applied Engineering and Technology

Course Number: 1012
Grade Level(s): 10-12
Periods Per Week: 5

Length of Course: 1 year

Credits: 1

Faculty Author(s): Brandon Smith

Date: January 2010

COURSE DESCRIPTION:

Applied Engineering and Technology is an advanced exploration of previous studies from either: How Stuff Works and/or Intro to Mechanical Engineering. This course will focus on problem solving activities which will require the students to use creativity and critical thinking skills. Students will exercise these skills by building projects that solve a given problem. Through trial and error, students will design, test, evaluate and then re-design their projects to better solve the given challenge. Projects include (but are not limited to): Small Engine Disassembly, CO2 Powered Flight Endurance, Rube Goldberg Challenge, Solid Fuel Rocket design and implementation, and Transportation Challenge. In order to be eligible, students must have a minimum of a "C" in How Stuff Works and/or Intro to Mechanical Engineering.

COURSE OUTLINE	OBJECTIVES (PA standard)	PROPOSED TIME / ACTUAL TIME	RESOURCES	LESSON REFLECTION (for future revisions)
Class Rules and Syllabus	3.2.12.B1.	2 Days	Overhead Projector	
PA Safety Lessons Equipment Demonstrations PA Safety Quizzes	Analyze the principles of rotational motion to solve problems relating to angular momentum and torque. 3.2.12.B2. Demonstrate how the law of conservation of momentum and	8 Days	Small Engine Tools Hand Tools	
	conservation of energy provide alternate approaches to predict and describe the motion of objects.		Power Tools	
Technical Design Process 3-view and Isometric Sketching Drafting Tools and 3-view	3.2.P.B3. Analyze the factors that influence convection, conduction, and radiation between objects or regions that are at different	7 Days	Lego Mindstorms Robotic Kits	
Drawing and design Lighter-Than-Air Flight	temperatures. 3.2.P.B4. Develop qualitative and quantitative understanding of current,	10 Days	Condor Plane Launcher	
Hot Air Balloons	voltage, resistance, and the connections among them. 3.2.12.B6.		Solid Fuel Rocket	
Condor Flight Challenge	CONSTANCY/CHANGE Compare and contrast motions of objects using forces and conservation laws.	12 Days	Launcher Briggs and Stratton	
Solid Fuel Staged Rocket design	3.4.10.A1. Illustrate how the development of technologies is often driven by profit and an economic market.	15 Days	Engines (12) PA Dept. of Ed.	
Boat Hull Design and Implementation	3.4.10.A2. Interpret how systems thinking applies logic and creativity with appropriate comprises in complex real-life problems.	12 Days	Safety Packets and quizzes	
Small Engine Studies	3.4.12.A3. Demonstrate how technological progress promotes the advancement of science, technology, engineering and	12 Days	Energy Technology Textbook	
Small Engine Demonstrations, Disassembly, and Reassembly	mathematics (STEM). 3.4.10.B2. Demonstrate how humans devise technologies to reduce the	20 Days	Energy, Power, and Transportation Technology	
2 and a reasoning	negative consequences of other technologies. 3.4.12.B1.		Textbook	
Transportation Challenge	Analyze ethical, social, economic, and cultural considerations as related to the development, selection, and use of technologies. 3.4.10.B4.	15 Days	Instructor Designed Handouts	
Rube Goldberg Design Challenge and device implementation	Recognize that Technological development has been evolutionary, the result of a series of refinements to a basic invention.	24 Days	Activity Materials and Supplies	
Robotics – Software applications	3.4.10.C1. Apply the components of the technological design process.	6 Days	Assorted Hardware Assorted Plastics	

	2 4 12 62		Asserted Wests	
DI (D ()	3.4.12.C2.		Assorted Woods	
Robotics – Practicing	Apply the concept that engineering design is influenced by	10.5	Assorted Styrofoam	
scenarios/situation from resource	personal characteristics, such as creativity, resourcefulness, and	10 Days	Adhesives	
CD	the ability to visualize and think abstractly.		Fasteners	
	3.4.12.C3.		Etc.	
Robotics – Development of	Apply the concept that many technological problems require a			
problem solving robot. Problem	multi-disciplinary approach.	20 Days		
based on student research and	3.4.10.D1.			
Development	Refine a design by using prototypes and modeling to ensure			
_	quality, efficiency, and productivity of a final product.			
Robotics – Teacher challenges –	3.4.12.D2.			
Students receive "On the spot"	Verify that engineering design is influenced by personal	5 Days		
problems which require them to	characteristics, such as creativity, resourcefulness, and the	,		
compete as team members.	ability to visualize and think abstractly.			
, respectively.	3.4.12.E3.			
	Compare and contrast energy and power systems as they relate			
	to pollution, renewable and non-renewable resources, and			
	conservation.			
	3.4.12.E5.			
	Explain how the design of intelligent and non-intelligent			
	transportation systems depends on many processes and			
	innovative techniques. 3.4.12.E6.			
	* · · · · = · = * ·			
	Compare and contrast the importance of science, technology,			
	engineering and math (STEM) as it pertains to the manufactured			
	world.			