Blackhawk School District

CURRICULUM

Course Title: Course Number:	Mechanical Engineering 1011
Grade Level(s):	9-12
Periods Per Week:	5
Length of Course:	1 semester
Credits:	.5
Faculty Author(s):	Brandon Smith
Date:	January 2010

COURSE DESCRIPTION:

Mechanical Engineering is an extension of the How Stuff Works course and is highly focused on projects. Like the How Stuff Works course, students learn problem-solving skills needed to produce projects and models that are functional and efficient. Upon completion of this course students will have attained engineering skills that will be useful in applied science, engineering and physics courses. Studies and projects include (but are not limited to): Small Engine Troubleshooting and Maintenance, Flight Endurance, Pneumatic/Hydraulic Design and modeling, Boat Hull design, and Robotic System Control. **Mechanical Engineering is a prerequisite for Applied Engineering and Technology.**

COURSE OUTLINE	OBJECTIVES (PA standard)	PROPOSED TIME / ACTUAL TIME	RESOURCES	LESSON REFLECTION (for future revisions)
Class Rules and Syllabus		2 Days	Overhead Projector	
	3.2.P.B1.			
PA Safety Lessons	Differentiate among translational motion, simple harmonic	8 Days	Lego Mindstorms	
Equipment Demonstrations	motion, and rotational motion in terms of position, velocity, and		Robotic Kits	
PA Safety Quizzes	acceleration.			
	Use force and mass to explain translational motion or simple harmonic motion of objects.		Small Engine Tools	
Technical Design Process	Relate torque and rotational inertia to explain rotational motion.	2 Days	Small Engine Parts	
3-view and Isometric Sketching	3.2.12.B2.			
	Demonstrate how the law of conservation of momentum and		Hand Tools	
Flight Endurance Unit	conservation of energy provide alternate approaches to predict	6 Days		
	and describe the motion of objects.		Power Tools	
Right Flyer Project (tsa regs.)	3.2.P.B3.	10 Days		
	Analyze the factors that influence convection, conduction, and		PA Dept. of Ed. Safety	
Small Engine Maintenance:	radiation between objects or regions that are at different	3 Days	Packets and quizzes	
• Safety	temperatures.	7 Days		
Maintenance	3.2.P.B4.		Energy Technology	
	Develop qualitative and quantitative understanding of current,		Textbook	
Engine Maintenance Lab	voltage, resistance, and the connections among them.			
Brought in from home or teacher	3.2.12.B6.	5 Days	Energy, Power, and	
	CONSTANCY/CHANGE		Transportation	
Fluid Power Studies	Compare and contrast motions of objects using forces and conservation laws.	10 Days	Technology Textbook	
Hydraulic/Pneumatic Robot	3.4.10.A1.		Instructor Designed	
design and implementation	Illustrate how the development of technologies is often driven	10 Days	Handouts	
	by profit and an economic market.			
Introduction to Robotics:	3.4.10.A2.		Activity Materials and	
	Interpret how systems thinking applies logic and creativity with		Supplies	
Guided Production	appropriate comprises in complex real-life problems.			
Guided Programming	3.4.12.A3.	3 Days	Assorted Hardware	
Student chosen Robotic	Demonstrate how technological progress promotes the	4 Days	Assorted Plastics	
Challenge	advancement of science, technology, engineering and	10 Days	Assorted Woods	
	mathematics (STEM).		Assorted Styrofoam	
	3.4.10.B2.		Adhesives	
	Demonstrate how humans devise technologies to reduce the		Fasteners	
	negative consequences of other technologies. 3.4.10.B1.		Etc.	
	Compare and contrast how the use of technology involves			
	weighing the trade-offs between the positive and negative			

	<u> </u>		
	effects.		
	3.4.10.B4.		
	Recognize that Technological development has been		
	evolutionary, the result of a series of refinements to a basic		
	invention.		
	3.4.10.C1.		
	Apply the components of the technological design process. 3.4.10.C2.		
	Analyze a prototype and/or create a working model to test a		
	design concept by making actual observations and necessary adjustments.		
	3.4.12.C3.		
	Apply the concept that many technological problems require a multi-disciplinary approach.		
	3.4.10.D1.		
	Refine a design by using prototypes and modeling to ensure		
	quality, efficiency, and productivity of a final product. 3.4.10.D2.		
	Diagnose a malfunctioning system and use tools, materials, and		
	knowledge to repair it.		
	3.4.12.E2.		
	Compare and contrast the technologies of biotechnology,		
	conservation, bio-fuels, and ecosystems as they relate to		
	managing Earth's resources effectively.		
	3.4.12.E3.		
	Compare and contrast energy and power systems as they relate		
	to pollution, renewable and non-renewable resources, and		
	conservation.		
	3.4.12.E5.		
	Explain how the design of intelligent and non-intelligent		
	transportation systems depends on many processes and		
	innovative techniques.		
	3.4.12.E6.		
	Compare and contrast the importance of science, technology,		
	engineering and math (STEM) as it pertains to the manufactured		
	world.		
L I		I	I